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Liquid metal interfaces, stressed by a high-frequency, alternating magnetic field are 
commonly observed to undulate. Even a planar interface stressed from above by a 
uniform magnetic field takes on an appearance that is very different from what is 
observed if the same layer is heated from below with about the same thermal input as 
associated with the eddy currents. This behaviour affects internal mixing and the 
transport of heat and material from interfaces. In  applications where the interface is 
used to form glass or other materials, the undulations can be disasterous. A goal of this 
paper is to identify the circumstances under which this motion can be avoided. 
A theoretical model is developed for fluid motions, coupled to a magnetic flux density 
(having magnitude B, and angular frequency w )  through a force density that is time 
averaged over one period of the alternating field. This theory, which does not include 
thermal effects, predicts a threshold for onset of instability determined by the ratio of 
layer thickness to skin depth and by the parameter M = B $ / p r ~ ,  where p = 4n x 10-7 
and T,I is the viscosity. The instability has an internal nature in that it is predicted even 
when the liquid is bounded by rigid insulating materials. Threshold measurements 
are reported that agree with the predictions over more than an order-of-magnitude 
variation in frequency, including low frequencies, for which the finite depth of the 
liquid layer is important. However, observed growth times are far shorter than 
predicted. It is concluded that the observed motions are in fact thermally driven, but 
take on an appearance dictated by the hydromagnetics. A previously developed 
lumped parameter model, which includes thermally driven motion, does predict 
growth times on the order of those observed. In  the lumped parameter model the 
critical field strength grossly affects the nonlinear saturation velocity. The critical M 
sets an upper limit on the extent to which a liquid metal can be levitated, depressed 
or transported magnetically at  a given frequency without incurring interfacial un- 
dulations and an augmentation of mass and heat transfer. 

1. Description of phenomenon 
Magnetic fields are commonly used to levitate and melt metals and to shape liquid 

interfaces. In those applications, where free surfaces give some hint of the bulk fluid 
motions, spontaneous undulations of the interface are commonly observed (Fraser 
et al. 1971; Sunderlam 1973; Melcher & Hurwitz 1970). Under more controlled condi- 
tions, they are also observed in the study of hydromagnetic surface waves (Schaffer 
1966, 1968). 

An apparatus for studying the phenomenon, shown in figure 1, consists of a set of 
2 F L M  1x4 
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Induced current 
FIGURE 1. Experimental apparatus. 

coils used to apply a nearly uniform audio frequency field to the surface of a dish of 
liquid metal. As the magnetic field is increased, a threshold is reached beyond which 
the fluid begins to undergo a distinctive unsteady corrugation. The interfacial motion, 
shown in the photographs of figure 2, consists of undulations having a frequency of 
approximately 0.5-2 Hz. When the field is turned on suddenly, the undulations appear 
and reach a saturation amplitude within 1-10 s. Edge effects associated with returning 
the currents that flow at the interface, can be sites of the convection. But, with care 
taken to minimize edge effects, there is apparently a well-defined change from a 
relatively quiescent state to one of random agitation as the field is raised. This motion 
differs in appearance from convection caused by heating the fluid unevenly or from 
below with an amount of heat that is essentially the same as that dissipated by the 
eddy currents. The surface undulations are also different in appearance from gravity- 
capillary surface waves. At typical observed wavelengths (1-10 cm) undulation fre- 
quencies are much less than those of a field-coupled gravity-capillary wave. Also, 
waves excited by striking the fluid contained have no similarity in appearance to the 
undulations. 

Analysis shows (McHale 1977) that a non-uniform magnetic field can drive relatively 
large-scale cellular convection, leading at high fields to turbulence. When the corres- 
ponding experiment is performed, the appearance of the surface is typically much 
smoother than that described. 

The model set forth in the following sections is aimed at  identifying electro- 
mechanical contributions to these motions. In static equilibrium, the pressure equi- 
librates the magnetic force density, which is in the vertical direction. The model 
pictures the motions as resulting from an instability caused by a magnetic force density 
resulting from the motion of the fluid itself. In the development of this linear continuum 
theory, thermal effects associated with the joule heating from the eddy currents are 
ignored. In  the discussion section, thermal effects are considered in the light of a 
nonlinear lumped-parameter model. In the linear stability theory, developed in $2, 
high-frequency components of the magnetic force are ignored. Fluid inertia and 
viscosity tend to prevent any appreciable motion at twice the frequency of the applied 
field (typically 2 kHz). This ' time-average force ' model includes the self-consistent 
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FIGURE 2. Photograph of surface reflecting grid lines for visualization of interface. Interface is 
viewed at angle through end of coil shown in figure '1. (a) Without field; ( b )  with a relatively 
intense field. 

effects of the fluid motion on the field and results in a prediction of the critical field 
strength as well as the instability growth rate. Section 3 presents experimental results 
which are compared to the theory. Finally, $4 summarizes what can be concluded 
about the origins of the undulations based on the successes and inadequacies of the 
pure electromechanical model. A lumped-parameter model described elsewhere 

2-2 
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FIUURE 3. Schematic diagram of fluid layer shown in cross-section. 
Gravity acts in - x direction. 

includes thermal as well as electromechanical influences and helps to relate the 
electromechanics to the thermal-gravitational origins of the energy driving the 
instability. 

2. Linear stability theory 
It is possible that the interfacial motion is a non-essential consequence of internal 

instability. Thus, motions considered first are with the interface constrained. Then 
effects of surface deformation are taken up. First, the bulk relations that apply in 
either case are derived. 

Bulk relations 
For the equilibrium shown in figure 3, the fluid is at  rest and the imposed z-directed 
magnetic field is uniform in the transverse y and z directions. The magnetic diffusion 
equation governs the space-time distribution in the liquid layer. For example, if the 
layer is thick compared t,o the skin depth S = (2/w,uoc7)* then this equilibrium distri- 
bution is 

(1) Be = 9 B e(l+l’b/a eW i, 
0 

where u is the electrical conductivity and ,uo is the permeability. With the fluid at  rest, 
the equilibrium magnetic stress, B,2/2,u0 and gravitational pressure, pgx (p and g the 
mass density and gravitational acceleration respectively) are balanced by the pressure, 
P. 

To linear terms in the perturbation velocity, v, and perturbation magnetic flux 
density, b, the laws of Faraday, Ampere and Ohm and flux continuity require that 

ab 
V2b = V x (vxB,), at-/G V.b = 0. 

These relations express the effect of the fluid motion on the magnetic field. 
The reciprocal effect of the fields on the motion is represented by the Navier-Stokes 

equation and continuity for an incompressible homogeneous fluid, written here to 
linear terms as 

rpv+V.tm, v . v  = 0, (41, ( 5 )  
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where p' is the perturbation pressure and tm is the linearized magnetic stress: 

Because the equations have coefficients independent of y and z, it is possible to 
Fourier analyse in these directions. The time dependence of the fluid motion is further 
represented by a complex frequency s, to be distinguished from the imposed frequency 

(7) v = 9O(z)exp(st-jk,y-jk2z). 

Substitution into (2) and (3) then shows that the perturbation flux density takes the 
form 

b = 9 {$+(z) exp [(s + j w )  t -jk, y - jkzz] + k ( z )  exp [(s - j w )  t -jk, y - jkzz]), (8) 

w :  

where the laws are then represented by the three expressions 

[D2- ka-pu(s +jw)]& = &jkzpcrl?,*C)(x)Oz, 

[D2-k2-pu(sfjw)]8yf = &jkzpu&(!)(x)8,, (10) 

D&-jk&-jk& = 0, (11)  

(9) 

where D = d( )/dx and k2 = k i +  kz. The third component of (2) is redundant. Note 
that these last three expressions are each two statements, one with the upper signs 
and operations respectively and the other with the lower signs. (Complex conjugation 
is represented by an asterisk.) These expressions represent the effect of the motion on 
the field without assumption as to the relative values of s and w. 

To represent the reciprocal effect, the flux densities of (8) are substituted into a 
typical term in (6) to obtain, 

Thus, the stress has a time average component with the complex frequency s and a 
high frequency component which has no time average. Because Is1 < w ,  the latter is 
now ignored on the grounds that inertia and viscous damping 'iron out' the high 
frequency response. Moreover, the complex amplitude of an entry Beb, in (6) is 
&(& & + Be&;). Inclusion of additional higher frequency terms is possible, but is not 
done here. 

Two types of internal modes can be distinguished. The first, termed longitudinal, 
has no vertical velocity, Oz. These can be shown to be stable under a variety of boundary 
conditions (McHale 1977), and are not considered further here. The second type of 
modes are termed depth modes and are now considered in detail. 
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Internal depth modes 
The appropriate laws are now (9)-( 11) representing the effect of motion on field and 
(4) and (5). The latter are written with the magnetic stress time-averaged, so that all 
of these mechanical laws can be satisfied by the space-time dependence introduced 
with (7). With the mechanical equations also written in terms of the complex ampli- 
tudes, these expressions are combined to obtain two coupled equations governing the 
velocity and magnetic field in the fluid bulk. In writing the second of these expressions, 
the property D2Be = jqucrBe is used. 

(13) 
A 'k 

(D2 - 7;) 6; = $p (2) z,, 
A s' A s  A 

- (Da - k 2 )  6, = (B2- k 2 ) 2 Z z  + kz M If($) 12Zz - 2jkz M [f*(P,s'+ 2j) 62 
pm A 

+f(Pm - 2 j )  6i1, (14) 
where variables are normalized such that 

b = 6D, k = ak, s' = s/oP, and f(x) = Be(x)/&, 
Also, A 

6* = 8f/B$), 6, = Oz(pa6), 7; E &2+2( iPmf j ) .  (15) 

Thus, the fundamental dimensionless parameters are 

With the competition of magnetic and viscous stresses represented by the magneto- 
viscous time pv/Bt,  M will be recognized as the ratio of the time u-l characterizing 
the imposed field to this magnetoviscous time. If M is large, the magnetic stress can 
compete with the viscous stress on the time scale of the alternating applied field. 
Because P, is the ratio of the magnetic diffusion time pu12 to the viscous diffusion 
time p12/7, it  might be termed the magnetic Prandtl number. 

For purposes of studying internally coupled modes, two mechanical conditions at  
the upper surfaces are required. For internal modes, 8, = 0 (normal velocity at an 
interface leads to surface coupling, the subject of the next section), and for the second 
either DO, = 0 (no slip condition) or D20z = 0 (' slippery wall ', essentially the case of a 
free surface in the limit of an infinite gravitational force). Two electrical boundary 
conditions are required to determine 6 completely. It is convenient to express these 
as a condition on 6, (and its derivatives), and a second condition on 6, (or 6&. Since the 
mechanical equation, (14), involves only the 2-directed field and since the mechanical 
boundary conditions do not involve the magnetic field at  all, only the first of these is 
relevant to determining stability. Three simple possibilities are considered. For a 
perfectly conducting wall just above, it follows from Faraday's law that 6; = 6; = 0. 
Foraninhitely permeablewall just above, Ampere'slawrequires that D6$ = 06, = 0. 
With the region above free space, it follows from matching the magnetic field to a 
Laplacian field in the upper half-space that 062 + k6Z+ = 0 6 ;  + k6; = 0. 

For these boundary conditions, it  can be shown (McHale 1917) that the principle of 
exchange of stabilities holds. The fact that terms involving 62 do not couple back 
into the fluid equation causes the suspicion tha t  the most critical situation is that in 
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which k is z-directed. This is in fact the case, as can be shown by elimination of 65 
between (13) and (14). All terms involving M are multiplied by &:. 

The numerical problem is to find the values of s, M, and & which allow non-trivial 
solutions of (13) and (14), and the boundary conditions. The parameters M and & 
must be real and both can be considered positive. Interest is focused on: (a)  the 
minimum value of M which gives instability for each value of k; (b) the value of &, 
called &*, which gives the smallest critical value of M ;  and (c) the growth rates 
associated with M > M*. 

The technique used here is the common one (Betchov & Criminale 1967) of finding 
four linearly independent solutions to (1  3) and (14) which satisfy the boundary 
conditions a t  the lower surface, and testing whether it is possible for a non-trivial 
linear combination of these solutions to satisfy the conditions at the upper boundary. 
The secant method is then used to converge on the appropriate isolated, real roots. 

The method used to generate the four independent solutions is different in two cases 
considered. In the first, and more important, case, the fluid is a lower half space 
bounded above by a half space of vacuum. For an infinite lower half space, the equi- 
librium magnetic field takes the form of (1). Then (13) and (14) become: 

(17) 

- exp [( I +j) Z] 6; ). ( 1 8) 

Terms of order P,s have been ignored. The four solutions can be formulated as infinite 
series of terms exponential in 5 and in ascending powers of M. Explicitly, they are: 

A jLn 

Z ( b 2 - & 2 ) 8 %  = (f)2-$)a6z+&2Mexp[22]8x+4&zM(exp[(1-j)Z]$;d+ A 

( b 2 - ~ % ) 6 ; d +  = ,exp[(1 +j)~]$%, 

The four solutions are specified by: 

Solution (11, D, = 1, PI = &; (23 4 
Solution (2), D, = 1, ij2 = ( & 2 + ~ ) f ;  (23 b)  

Solution (3), Do = C; = 0, C,+ = 1, P, = T + - ( i + j ) ;  

Solution (a), Do = C,+ = 0, C; = 1, P4 = p-- (1 -j). 

u 

(234  

( 2 3 4  
Thus, & and 6$ and their derivatives at x = 0 are expressed as power series in M .  

These series are strongly convergent, as can be seen from the recurrence relations, 
(21) and (22). 

The four independent solutions so calculated are only independent for s' not 
equal to zero. For this reason, it is necessary to consider small values of 3, find the 

CI 

A 
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k6 
FIGURE 4. Critical field parameter M (defined by eqtmtion ( le)) ,  as a function of wavenumber 
normalized to the skin depth for a flat, stress-free surface (lower curve) and for a rigid flat upper 
boundary (upper curve). 

corresponding values of M, and interpolate to find the critical value of M. In figure 4 
the results of this calculation are shown for the case of the flat, stress free surface and 
for a flat, rigid surface. What is shown is the minimum value of M for each value of &. 
There are in fact other, higher values of M that are also solutions. These correspond to 
solutions in which gZ and vary more quickly in 3. In both cases there is a definite 
value of & at which a minimum value of M is required for instability to occur. In  the 
stress free case this minimum value of M is approximately 106, and occurs at  k 
approximately 0.4. 

Other boundary conditions at  x = 0 can be considered and result in somewhat 
different critical values of M, but not in a qualitatively different shape of the M us. k. 
curve. 

With the thickness of the layer finite, the form of the equilibrium magnetic field is 
no longer a simple exponential. This precludes the use of the above power series 
solutions. A predictor-corrector method is therefore used to generate the four solutions 
analogous to ( 19) and (20). 
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The results shown in figure 6 are for several layer thicknesses, bounded by rigid 
walls. Growth rates are of the same order as for the half space of liquid. 

Surface effects 
The boundary conditions applicable when the surface deforms are considerably 

more complicated than when the surface is flat. 
The upper surface of the layer is assumed to be bounded by free space. The pertur- 

bation magnetic fields above the interface are then given by the gradient of a scalar 
potential which satisfies Laplace’s equation. Since the magnetic field is sinusoidal in 
y and z, with wavenumbers ku and ks, it follows that 

_ -  abX - -kb,. 
ax (24) 

Since there are no surface currents or magnetic materials, the following must be 
true : n. [B],,, = o 

n x [[B]x=E = 0. (26) 

,The brackets [ ]I indicate the difference in the enclosed quantity between the upper 
and lower regions, and 6 is the 11: co-ordinate of the interface. The unit vector normal 
to the surface is ii, and is given to linear terms by 

In terms of the Fourier-analysed variables, the boundary condition a t  x = 0 is found 
by combining (24), (25), (26) and (27) to linear terms: 

Use is made here of the fact that, to linear terms, 

sp = Ox( .  = 0) .  (29) 

The mechanical boundary conditions result from consideration of force balance for 
the interface: 

The surface tension is y, and Ssj, the viscous stress tensor, is given by 

Using equations (7), (19), (24) and (31), the x component of (30) can be written as 

Pa k v + W + - -  Ox+37sDOx+- DOx 
k2 k2 2/48 
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FIGURE 6. Growth rate v8. field parameter M for free and rigid surfaces. Normalizations of 8 and 

the ‘gravitational’ parameter g are given with (14) and (36). k8 = 0.4. 

The other boundary condition on @, results from consideration of the y and x compo- 
nents of (30), which to linear terms are 

?l($+a,) av av, = 0, q(2+%) = 0. 
(331, (34) 

Using continuity and transforming to the complex variables : 

0 2 0 ,  + k20x = 0. (35) 

The boundary conditions are thus condensed into four conditions on &, Gx and their 
derivatives. Again, to determine fully the y and z components of the magnetic field 
requires another set of boundary conditions in the same manner as in the previous 
case. But, as there, these do not affect the problem of stability because the y and z 
directed field coupling with the fluid is expressed in (32) and (14) in terms of 8, and 
its derivatives. This involves combining the actual physical boundary conditions and 
effectively ignores three boundary conditions involving &; and 0,. The question is left 
open as to whether these conditions are satisfied by solutions of the condensed set of 
boundary conditions, if k, is finite. 

This dilemma of satisfying an extra three boundary conditions is met by considering 
the fact that there is an additional set of modes independent from those described by 
(20) and (21). These additional modes are those for which 8, is identically zero. It can 
be shown (McHale 1977) that the additional modes that result by considering these 
extra. solutions are all stable, and that unstable solutions resulting from considering 
only (35), (38) and (42) are unaffected by the extra solutions. 
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F I a m  6. Critical field parameter M vs. normalized wavenumber for rigid anL _ _  ie boundaries 
with the parameter g normalized aa in (36). 

For the natural frequencies associated with essentially gravity-capillary surface 
waves, for all values of k, the effect of the field is to increase the imaginary part of s 
and to increase the rate of decay. In no case is the field destabilizing. 

The waves that are essentially internally coupled modes have somewhat lower M 
in the case of a free surface than if the surface is flat. By means of figure 6, the growth 
rates and critical field parameters associated with the case of a flat surface, (gravity 
infinite) and the case in which gravity has a value typifying actual experimental 
conditions are compared. . 

When the normalization is introduced into (32) the natural dimensionless gravity 
constant is 

For actual experimental conditions @ is approximately 300. The inclusion of the 
free surface is moderately destabilizing, as shown in figure 6. 
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T,, melting point 47 "C 
p, maas density 8-8 x 10s kg m-s 
c,,, specific heat 150 J K-1 kg-1 
H,, heat of fusion 1-4 x lo* J kg-1 
k, thermal conductivity 16-5 W m-1 
g, electrical conductivity 2 x 1CP mho m-1 
7, absolute viscosity - 5 x 10-4 kg m-15-1 

TABLE 1. Properties of Cerelow-117 alloy 
(Bi 44.7%, Pb 22.6%, In  19.1%, Sn 8.30/ 01 Cd &30/) 0 .  

wpoA' - 
FIQ~RE 7. Observed critical field parameter M w8, normalized frequency. 0, glass dish, 

A = 1.5 cm; 0,  glass dish, A = 2.2 cm; +, copper dish, A = 1.5 cm. 

3. Experimental results 
The experimental apparatus is shown in figure 1. Three separate coils are driven so 

as to make the field above the fluid surface as uniform as possible. Measurements 
indicate a maximum field inhomogeneity of 5 yo. 

The liquid metal used is a low melting point commercial alloy of lead, tin, and 
bismuth (Cerrelow-117). The properties of the alloy are shown in table 1. The surface 
of the metal is covered with a thin layer of weak hydrochloric acid to retard the 
formation of surface film. An isolation cell is suspended in the centre of a larger 
container to reduce end and edge effects. 

Further details of the experiment.al apparatus are given in McHale (1977). 
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The critical field strength is observed as the frequency is continuously varied. 
Different depths of fluid are used. In figure 7 the experimental data is summarized in 
non-dimensional form. The solid curve in that figure is constructed from the theory of 
the previous section. At low values of o,uaA2 the critical value of M is a strong function 
of that argument, while for large values, M* asymptotically approaches the value 
given by the theory for an infinite lower half space. Experimental values are con- 
sistently slightly lower than those theoretically predicted but within errors introduced 
by uncertainties in property values. 

4. Discussion and conclusions 
Measurements of critical field strength required for instability are in good agreement 

with the prediction based on the linear hydromagnetic stability theory. It seems clear 
that the undulations have an origin relating to the electromechanical mode. However, 
a further observation makes it clear that the primary source of energy for what is 
observed does not come from the purely electromechanical processes that have been 
described. 

When the field is turned on suddenly, the observed time for the motion to increase 
from essentially nothing to its final saturation value is one to ten seconds. Whether 
or not the free surface effects are included, none of the growth rates predicted by the 
electromechanical model developed here is this short. Typically, the instability is 
predicted to grow a t  rates of 100 to 1000 seconds. 

Motivated by this discrepancy, a lumped parameter model that includes thermal 
effects has been developed (McHale & Melcher 1978). This model suggests that what 
is observed is driven by eddy current heating, but takes on its character from the 
electromechanics. In effect, the processes described here result in certain circulations 
being accelerated by a negative damping. The combination of eddy currents, both in 
the liquid and in the container as determined by contact resistance, and cooling from 
the upper surface, can result in net heating of the fluid from below or from the side. 
For both cases, the resulting motion should appear, by the lumped parameter model, 
in 5-8 seconds, consistent with experimental results. 

Some experiments demonstrate the augmentation of heat transfer caused by the 
electromechanics (McHale & Melcher 1978). However, future work in this area should 
recognize that the undulations can be driven by the heating, with the electromechanics 
effectively decreasing the damping. This should also occur in shear flows, where the 
drive can come from an equilibrium fluid velocity. Shear flows are more attractive 
theoretically because purely thermal instability can occur for very small heating. 

For a given frequency and fluid, the critical value of M determines the maximum 
depth of fluid that can be levitated or depressed magnetically without causing surface 
undulations or augmentation of heat and mass transfer. This is true because both M 
and the magnetic pressure depend on B:. (Melcher 1981). For example, alayer having 
thickness L would be 1evitatedifpLg = Bt/4,u, and so the greatest thickness that could 
be levitated without the electromechanical instability would be L = quM*/4pg. 

This work was performed as a part of the program ‘Machine Casting of Ferrous 
Alloys’ carried out at MIT under the leadership of Professor Merton C. Flemings 
and sponsored by DARPA. 
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